com2014-template/Workshop - 1 (Random, BFS, ...

26 KiB

None <html> <head> </head>

Make sure you run this at the begining

In [ ]:
import os
import sys
import math
import numpy as np
import matplotlib.pyplot as plt

# Append template path to sys path
sys.path.append(os.getcwd() + "/template")
In [ ]:
from utils.load_data import load_data
from utils.visualize_tsp import plotTSP

from tsp import TSP_Bench_ONE
from tsp import TSP_Bench_PATH
from tsp import TSP_Bench_ALL

Workshop Starts Here

TSP
solutions

Get familiar with your dataset

There are problems at different levels. 3 simple, 2 medium, 1 difficult.

In [ ]:
for root, _, files in os.walk('./template/data'):
    if(files):
        for f in files:
            print(str(root) + "/" + f)
In [ ]:
ulysses16 = np.array(load_data("./template/data/simple/ulysses16.tsp"))
In [ ]:
ulysses16[:]
In [ ]:
plt.scatter(ulysses16[:, 0], ulysses16[:, 1])
for i in range(0, 16):
    plt.annotate(i, (ulysses16[i, 0], ulysses16[i, 1]+0.5))

Naive Solution: In Order

In [ ]:
simple_sequence = list(range(0, 16))
print(simple_sequence)
In [ ]:
plotTSP([simple_sequence], ulysses16, num_iters=1)

Naive Solution: Random Permutation

In [ ]:
random_permutation = np.random.permutation(16).tolist()
print(random_permutation)
In [ ]:
plotTSP([random_permutation], ulysses16, num_iters=1)

Best Solution

In [ ]:
best_ulysses16 = [0, 13, 12, 11, 6, 5, 14, 4, 10, 8, 9, 15, 2, 1, 3, 7]
plotTSP([best_ulysses16], ulysses16, num_iters=1)

Calculate Fitness (Sum of all Distances)

In [ ]:
def dist(node_0, node_1, coords):
        """
        Euclidean distance between two nodes.
        """
        coord_0, coord_1 = coords[node_0], coords[node_1]
        return math.sqrt((coord_0[0] - coord_1[0]) ** 2 + (coord_0[1] - coord_1[1]) ** 2)
In [ ]:
print("Coordinate of City 0:", ulysses16[0])
In [ ]:
print("Coordinate of City 1:", ulysses16[1])
In [ ]:
print("Distance Between", dist(0, 1, ulysses16))
In [ ]:
def fitness(solution, coords):
    N = len(coords)
    cur_fit = 0
    for i in range(len(solution)):
        cur_fit += dist(solution[i % N], solution[(i + 1) % N], coords)
    return cur_fit
In [ ]:
print ("Order Fitness:\t", fitness(simple_sequence, ulysses16))
print ("Random Fitness:\t", fitness(random_permutation, ulysses16))
print ("Best Fitness:\t", fitness(best_ulysses16, ulysses16))

Naive Random Model

In [ ]:
import math
import random
from model.base_model import Model
import numpy as np

class MyRandomModel(Model):
    def __init__(self):
        super().__init__()

    def init(self, nodes):
        """
        Put your initialization here.
        """
        super().init(nodes)

    def fit(self, max_it=1000):
        """
        Put your iteration process here.
        """
        random_solutions = []
        for i in range(0, max_it):
            solution = np.random.permutation(self.N).tolist()
            random_solutions.append(solution)
            self.fitness_list.append(self.fitness(solution))

        self.best_solution = random_solutions[self.fitness_list.index(min(self.fitness_list))]
        return self.best_solution, self.fitness_list
In [ ]:
tsp_file = './template/data/simple/ulysses16.tsp'
In [ ]:
best_solution, fitness_list, time = TSP_Bench_ONE(tsp_file, MyRandomModel)
In [ ]:
plt.plot(fitness_list, 'o-')

Minimum Spanning Tree (Depth First)

In [ ]:
import math
import random
from model.base_model import Model

class MyDFSModel(Model):
    def __init__(self):
        super().__init__()

    def init(self, nodes):
        """
        Put your initialization here.
        """
        super().init(nodes)

    def fit(self, max_it=1000):
        """
        Put your iteration process here.
        """

        MST_solutions = []
        # Depth First: Set one city as starting point, iterate to the end, then select next city as starting point.
        for i in range(0, self.N):
            solution = []
            solution.append(i)
            unvisited_list = list(range(0, self.N))
            cur_city = i
            # print("[starting]", i)
            for steps in range(self.N - 1):
                # print(unvisited_list)
                unvisited_list.remove(cur_city)
                closest_neighbour = -1
                shortest_distance = math.inf
                for j in unvisited_list:
                    if(self.dist(cur_city, j) < shortest_distance):
                        closest_neighbour = j
                        shortest_distance = self.dist(cur_city, j)
                solution.append(closest_neighbour)
                cur_city = closest_neighbour
            MST_solutions.append(solution)
            self.fitness_list.append(self.fitness(solution))

        self.best_solution = MST_solutions[ self.fitness_list.index(min(self.fitness_list)) ]

        return self.best_solution, self.fitness_list
In [ ]:
tsp_file = './template/data/simple/ulysses16.tsp'
In [ ]:
best_solution, fitness_list, time = TSP_Bench_ONE(tsp_file, MyDFSModel)
In [ ]:
plt.plot(fitness_list, 'o-')

Minimum Spanning Tree (Breadth First)

In [ ]:
import math
import random
from model.base_model import Model

class MyBFSModel(Model):
    def __init__(self):
        super().__init__()

    def init(self, nodes):
        """
        Put your initialization here.
        """
        super().init(nodes)

    def fit(self, max_it=1000):
        """
        Put your iteration process here.
        """

        UCS_solutions = []
    
        for i in range(0, self.N):
            solution = [i]
            UCS_solutions.append(solution)
    
        # Breadth First: Set each city as starting point, then go to next city simultaneously
        for step in range(0, self.N - 1):
            # print("[step]", step)
            unvisited_list = list(range(0, self.N))
            # For each search path
            for i in range(0, self.N):
                cur_city = UCS_solutions[i][-1]
                unvisited_list = list( set(range(0, self.N)) - set(UCS_solutions[i]) )
                # print(unvisited_list)
                closest_neighbour = -1
                shortest_distance = math.inf
                for j in unvisited_list:
                    if(self.dist(cur_city, j) < shortest_distance):
                        closest_neighbour = j
                        shortest_distance = self.dist(cur_city, j)
                UCS_solutions[i].append(closest_neighbour)

        for i in range(0, self.N):
            self.fitness_list.append(self.fitness(UCS_solutions[i]))
 
        self.best_solution = UCS_solutions[ self.fitness_list.index(min(self.fitness_list)) ]
        self.fitness_list.append(self.fitness(self.best_solution))

        return self.best_solution, self.fitness_list
In [ ]:
tsp_file = './template/data/simple/ulysses16.tsp'
In [ ]:
best_solution, fitness_list, time = TSP_Bench_ONE(tsp_file, MyBFSModel)
In [ ]:
plt.plot(fitness_list, 'o-')

Dynamic Programming (DFS)

Costs a lot of memory

In [ ]:
import math
import random
from model.base_model import Model

class MyDPDModel(Model):
    def __init__(self):
        super().__init__()

    def init(self, nodes):
        """
        Put your initialization here.
        """
        super().init(nodes)

    def getMST(self, node):
        MST = []
        distances = []
        for i in range(0, self.N):
            if i != node:
                MST.append(i)
                distances.append(self.dist(node, i))
        return [x for _,x in sorted(zip(distances, MST))]

    def fit(self, max_it=1000):
        """
        Put your iteration process here.
        """

        MST_solutions = []

        # Depth First: Set one city as starting point, iterate to the end, then select next city as starting point.
        MSTs = []
        for i in range(0, self.N):
            MSTs.append([-1] * self.N)
        for i in range(0, self.N):
            solution = []
            solution.append(i)
            unvisited_list = list(range(0, self.N))
            cur_city = i
            # print("[starting]", i)
            for steps in range(self.N - 1):
                # print(unvisited_list)
                unvisited_list.remove(cur_city)
                if MSTs[cur_city][0] == -1:
                    MST = self.getMST(cur_city)
                    MSTs[cur_city] = MST
                
                for j in MSTs[cur_city]:
                    if(j in unvisited_list):
                        solution.append(j)
                        cur_city = j
                        break
            # print(solution)
            MST_solutions.append(solution)
            self.fitness_list.append(self.fitness(solution))

        self.best_solution = MST_solutions[ self.fitness_list.index(min(self.fitness_list)) ]

        return self.best_solution, self.fitness_list
In [ ]:
tsp_file = './template/data/simple/ulysses16.tsp'
In [ ]:
best_solution, fitness_list, time = TSP_Bench_ONE(tsp_file, MyDPDModel)
In [ ]:
plt.plot(fitness_list, 'o-')

Dynamic Programming (BFS)

In [ ]:
import math
import random
from model.base_model import Model

class MyDPBModel(Model):
    def __init__(self):
        super().__init__()

    def init(self, nodes):
        """
        Put your initialization here.
        """
        super().init(nodes)

    def getMST(self, node):
        MST = []
        distances = []
        for i in range(0, self.N):
            if i != node:
                MST.append(i)
                distances.append(self.dist(node, i))
        return [x for _,x in sorted(zip(distances, MST))]

    def fit(self, max_it=1000):
        """
        Put your iteration process here.
        """

        MST_solutions = []
    
        for i in range(0, self.N):
            solution = [i]
            MST_solutions.append(solution)
    
        MSTs = []
        for i in range(0, self.N):
            MSTs.append([-1] * self.N)

        # Breadth First: Set each city as starting point, then go to next city simultaneously
        for step in range(0, self.N - 1):
            # print("[step]", step)
            unvisited_list = list(range(0, self.N))
            # For each search path
            for i in range(0, self.N):
                cur_city = MST_solutions[i][-1]
                unvisited_list = list( set(range(0, self.N)) - set(MST_solutions[i]) )

                if MSTs[cur_city][0] == -1:
                    MST = self.getMST(cur_city)
                    MSTs[cur_city] = MST

                for j in MSTs[cur_city]:
                    if(j in unvisited_list):
                        MST_solutions[i].append(j)
                        break

        for i in range(0, self.N):
            self.fitness_list.append(self.fitness(MST_solutions[i]))
 
        self.best_solution = MST_solutions[ self.fitness_list.index(min(self.fitness_list)) ]
        self.fitness_list.append(self.fitness(self.best_solution))

        return self.best_solution, self.fitness_list
In [ ]:
tsp_file = './template/data/simple/ulysses16.tsp'
In [ ]:
best_solution, fitness_list, time = TSP_Bench_ONE(tsp_file, MyDPBModel)
In [ ]:
plt.plot(fitness_list, 'o-')

Your Smart Model

In [ ]:
import math
import random
from model.base_model import Model

class MyModel(Model):
    def __init__(self):
        super().__init__()

    def init(self, nodes):
        """
        Put your initialization here.
        """
        super().init(nodes)

        self.log("Nothing to initialize in your model now")

    def fit(self, max_it=1000):
        """
        Put your iteration process here.
        """
        self.best_solution = np.random.permutation(self.N).tolist()
        self.fitness_list.append(self.fitness(self.best_solution))

        return self.best_solution, self.fitness_list

Test your Model

In [ ]:
tsp_problem = './template/data/simple/ulysses16.tsp'
In [ ]:
best_solution, fitness_list, time = TSP_Bench_ONE(tsp_file, MyModel)

Test All Dataset

In [ ]:
tsp_path = './template'
for root, _, files in os.walk(tsp_path + '/data'):
    if(files):
        for f in files:
            print(str(root) + "/" + f)
In [ ]:
def plot_results(best_solutions, times, title):
    fig = plt.figure()
    nodes = [len(s) for s in best_solutions]
    data = np.array([[node, time] for node, time in sorted(zip(nodes, times))])
    plt.plot(data[:, 0], data[:, 1], 'o-')
    fig.suptitle(title, fontsize=20)
In [ ]:
print("Random Search")
best_solutions, fitness_lists, times = TSP_Bench_ALL(tsp_path, MyRandomModel)
In [ ]:
plot_results(best_solutions, times, "Random Model")
In [ ]:
print("Depth First Search")
best_solutions, fitness_lists, times = TSP_Bench_ALL(tsp_path, MyDFSModel)
In [ ]:
plot_results(best_solutions, times, "Depth First Search")
In [ ]:
print("Breadth First Search")
best_solutions, fitness_lists, times = TSP_Bench_ALL(tsp_path, MyBFSModel)
In [ ]:
plot_results(best_solutions, times, "Breadth First Search")
In [ ]:
print("Dynamic Programming (Depth First)")
best_solutions, fitness_lists, times = TSP_Bench_ALL(tsp_path, MyDPDModel)
In [ ]:
plot_results(best_solutions, times, "Dynamic Programming (Depth First)")
In [ ]:
print("Dynamic Progrmaming (Breadth First)")
best_solutions, fitness_lists, times = TSP_Bench_ALL(tsp_path, MyDPBModel)
In [ ]:
plot_results(best_solutions, times, "Dynamic Programming (Breadth First)")

Conclusions (Random, BFS, DFS, DP)

In [ ]:
# Simple
# ulysses16:   77 (BFS),     84 (DFS)
# att48:    39236 (BFS),  40763 (DFS)
# st70:       761 (BFS),    901 (DFS)

# Medium
# a280:     3088 (BFS),   3558 (DFS)
# pcb442:  58952 (BFS),  61984 (DFS)

# Difficult
# dsj1000: time-out (DP-BFS) 23,552,227 (DP-DFS)

1. All different models get the same results every time (except random).

2. All different models have an exponential time complexity (except random).

3. Depth First Seach is a little faster than Breadth First Search, but Breadth First get better results.

4. Only dynamic programming solves the problem with 1000 cities (Fast).

In [ ]:
# In the next workshop 
# Will try to solve the problem with 1000 cities faster, and get better results
In [ ]:

</html>