25 KiB
25 KiB
None
<html>
<head>
</head>
</html>
Make sure you run this at the begining
In [ ]:
import os
import sys
import math
import numpy as np
import matplotlib.pyplot as plt
# Append template path to sys path
sys.path.append(os.getcwd() + "/template")
In [ ]:
from utils.load_data import load_data
from utils.load_data import log
from utils.visualize_tsp import plotTSP
from utils.tsp import TSP
from utils.tsp import TSP_Bench
from utils.tsp import TSP_Bench_ALL
Workshop Starts Here¶
Get familiar with your dataset¶
There are problems at different levels. 3 simple, 2 medium, 1 hard.
In [ ]:
for root, _, files in os.walk('./template/data'):
if(files):
for f in files:
print(str(root) + "/" + f)
In [ ]:
ulysses16 = np.array(load_data("./template/data/simple/ulysses16.tsp"))
In [ ]:
ulysses16[:]
In [ ]:
plt.scatter(ulysses16[:, 0], ulysses16[:, 1])
for i in range(0, 16):
plt.annotate(i, (ulysses16[i, 0], ulysses16[i, 1]+0.5))
Naive Solution: In Order¶
In [ ]:
simple_sequence = list(range(0, 16))
print(simple_sequence)
In [ ]:
plotTSP([simple_sequence], ulysses16, num_iters=1)
Naive Solution: Random Permutation¶
In [ ]:
random_permutation = np.random.permutation(16).tolist()
print(random_permutation)
In [ ]:
plotTSP([random_permutation], ulysses16, num_iters=1)
Best Solution¶
In [ ]:
best_ulysses16 = [0, 13, 12, 11, 6, 5, 14, 4, 10, 8, 9, 15, 2, 1, 3, 7]
plotTSP([best_ulysses16], ulysses16, num_iters=1)
Calculate Fitness (Sum of all Distances)¶
In [ ]:
def dist(node_0, node_1, coords):
"""
Euclidean distance between two nodes.
"""
coord_0, coord_1 = coords[node_0], coords[node_1]
return math.sqrt((coord_0[0] - coord_1[0]) ** 2 + (coord_0[1] - coord_1[1]) ** 2)
In [ ]:
print("Coordinate of City 0:", ulysses16[0])
In [ ]:
print("Coordinate of City 1:", ulysses16[1])
In [ ]:
print("Distance Between", dist(0, 1, ulysses16))
In [ ]:
def fitness(solution, coords):
N = len(coords)
cur_fit = 0
if(len(solution) != N):
return math.inf
for i in range(len(solution)):
cur_fit += dist(solution[i % N], solution[(i + 1) % N], coords)
return cur_fit
In [ ]:
print ("Order Fitness:\t", fitness(simple_sequence, ulysses16))
print ("Random Fitness:\t", fitness(random_permutation, ulysses16))
print ("Best Fitness:\t", fitness(best_ulysses16, ulysses16))
Naive Random Model¶
In [ ]:
import math
import random
import numpy as np
from model.base_model import Model
class MyRandomModel(Model):
def __init__(self):
super().__init__()
def init(self, nodes):
"""
Put your initialization here.
"""
super().init(nodes)
def fit(self, max_it):
"""
Put your iteration process here.
"""
random_solutions = []
for i in range(0, max_it):
solution = np.random.permutation(self.N).tolist()
random_solutions.append(solution)
self.fitness_list.append(self.fitness(solution))
self.best_solution = random_solutions[self.fitness_list.index(min(self.fitness_list))]
return self.best_solution, self.fitness_list
In [ ]:
tsp_file = './template/data/simple/ulysses16.tsp'
In [ ]:
best_solution, fitness_list, time = TSP_Bench(tsp_file, MyRandomModel, max_it=100)
In [ ]:
plt.plot(fitness_list, 'o-')
Uniform Cost Search¶
In [ ]:
import math
import random
from model.base_model import Model
class MyUCSModel(Model):
def __init__(self):
super().__init__()
def init(self, nodes):
"""
Put your initialization here.
"""
super().init(nodes)
def getMST(self, node):
MST = []
distances = []
for i in range(0, self.N):
if i != node:
MST.append(i)
distances.append(self.dist(node, i))
return [x for _,x in sorted(zip(distances, MST))]
def fit(self, max_it):
"""
Put your iteration process here.
"""
UCS_solutions = []
UCS_losses = []
for i in range(0, self.N):
solution = [i]
UCS_solutions.append(solution)
UCS_losses.append(math.inf)
MSTs = []
for i in range(0, self.N):
MSTs.append([-1] * self.N)
# Breadth First: Set each city as starting point, then go to next city simultaneously
min_loss = math.inf
while(len(UCS_solutions[ UCS_losses.index(min(UCS_losses)) ]) != self.N):
unvisited_list = list(range(0, self.N))
min_loss = min(UCS_losses)
# For each search path
for i in range(0, self.N):
if UCS_losses[i] == min_loss:
cur_city = UCS_solutions[i][-1]
unvisited_list = list( set(range(0, self.N)) - set(UCS_solutions[i]) )
if MSTs[cur_city][0] == -1:
MST = self.getMST(cur_city)
MSTs[cur_city] = MST
for j in MSTs[cur_city]:
if(j in unvisited_list):
UCS_solutions[i].append(j)
N = len(UCS_solutions[i])
cur_fit = 0
for k in range(len(UCS_solutions[i])):
coord_0, coord_1 = self.coords[UCS_solutions[i][k % N]], self.coords[UCS_solutions[i][(k + 1) % N]]
cur_fit += math.sqrt((coord_0[0] - coord_1[0]) ** 2 + (coord_0[1] - coord_1[1]) ** 2)
UCS_losses[i] = cur_fit
# if(UCS_losses[i] < min_loss):
# min_loss = UCS_losses[i]
break
self.best_solution = UCS_solutions[ UCS_losses.index(min(UCS_losses)) ]
self.fitness_list.append(self.fitness(self.best_solution))
return self.best_solution, self.fitness_list
In [ ]:
tsp_file = './template/data/simple/ulysses16.tsp'
In [ ]:
best_solution, fitness_list, time = TSP_Bench(tsp_file, MyUCSModel)
A star¶
Heuristic
In [ ]:
import math
import random
from model.base_model import Model
class MyASModel(Model):
def __init__(self):
super().__init__()
def init(self, nodes):
"""
Put your initialization here.
"""
super().init(nodes)
def getMST(self, node):
MST = []
distances = []
for i in range(0, self.N):
if i != node:
MST.append(i)
distances.append(self.dist(node, i))
return [x for _,x in sorted(zip(distances, MST))]
def fit(self, max_it):
"""
Put your iteration process here.
"""
MST_solutions = []
for i in range(0, self.N):
solution = [i]
MST_solutions.append(solution)
# Breadth First: Set each city as starting point, then go to next city simultaneously
for step in range(0, self.N - 1):
# print("[step]", step)
unvisited_list = list(range(0, self.N))
# For each search path
for i in range(0, self.N):
cur_city = MST_solutions[i][-1]
unvisited_list = list( set(range(0, self.N)) - set(MST_solutions[i]) )
closest_neighbour = -1
min_f = math.inf
for j in unvisited_list:
g = self.dist(cur_city, j)
sub_unvisited_list = unvisited_list.copy()
sub_unvisited_list.remove(j)
sub_cur_city = self.getMST(j)[0]
h = 0
while len(sub_unvisited_list) > 0:
if(len(unvisited_list) == 2):
break
else:
for k in self.getMST(sub_cur_city):
if k in sub_unvisited_list:
h = h + self.dist(sub_cur_city, k)
sub_cur_city = k
sub_unvisited_list.remove(k)
break
# Get f(x) = g(x) + h(x)
f = g + h
if(f < min_f):
closest_neighbour = j
min_f = f
MST_solutions[i].append(closest_neighbour)
for i in range(0, self.N):
self.fitness_list.append(self.fitness(MST_solutions[i]))
self.best_solution = MST_solutions[ self.fitness_list.index(min(self.fitness_list)) ]
return self.best_solution, self.fitness_list
In [ ]:
tsp_file = './template/data/simple/ulysses16.tsp'
In [ ]:
best_solution, fitness_list, time = TSP_Bench(tsp_file, MyASModel)
In [ ]:
plt.plot(fitness_list, 'o-')
Hill Climbing¶
Heuristic Iteration
In [ ]:
import math
import random
import numpy as np
from model.base_model import Model
class MyHillClimbModel(Model):
def __init__(self):
super().__init__()
def init(self, nodes):
"""
Put your initialization here.
"""
super().init(nodes)
def random_tour(self):
return np.random.permutation(self.N).tolist()
def all_pairs(self, size, shuffle=random.shuffle):
r1 = list(range(size))
r2 = list(range(size))
if shuffle:
shuffle(r1)
shuffle(r2)
for i in r1:
for j in r2:
yield (i,j)
def move_operator(self, tour):
'''generator to return all possible variations
where the section between two cities are swapped'''
for i,j in self.all_pairs(len(tour)):
if i != j:
copy=tour[:]
if i < j:
copy[i:j+1]=reversed(tour[i:j+1])
else:
copy[i+1:]=reversed(tour[:j])
copy[:j]=reversed(tour[i+1:])
if copy != tour: # no point returning the same tour
yield copy
def fit(self, max_it=100):
"""
Put your iteration process here.
"""
self.best_solution = self.random_tour()
best_score = -self.fitness(self.best_solution)
num_evaluations = 0
while num_evaluations < max_it:
# examine moves around our current position
move_made = False
for next_solution in self.move_operator(self.best_solution):
if num_evaluations >= max_it:
print("Max iteration reached:", max_it)
break
# see if this move is better than the current
next_score = -self.fitness(next_solution)
num_evaluations += 1
if next_score > best_score:
self.best_solution = next_solution
self.fitness_list.append(self.fitness(self.best_solution))
best_score=next_score
move_made=True
break # depth first search
if not move_made:
break # we couldn't find a better move (must be at a local maximum)
return self.best_solution, self.fitness_list
In [ ]:
tsp_file = './template/data/simple/ulysses16.tsp'
In [ ]:
best_solution, fitness_list, time = TSP_Bench(tsp_file, MyHillClimbModel)
In [ ]:
plt.plot(fitness_list)
Your Smart Model¶
In [ ]:
import math
import random
from model.base_model import Model
import numpy as np
class MyModel(Model):
def __init__(self):
super().__init__()
def init(self, nodes):
"""
Put your initialization here.
"""
super().init(nodes)
self.log("Nothing to initialize in your model now")
def fit(self, max_it):
"""
Put your iteration process here.
"""
self.best_solution = np.random.permutation(self.N).tolist()
self.fitness_list.append(self.fitness(self.best_solution))
return self.best_solution, self.fitness_list
Test your Model¶
In [ ]:
tsp_problem = './template/data/simple/ulysses16.tsp'
In [ ]:
best_solution, fitness_list, time = TSP_Bench(tsp_file, MyModel)
Test All Dataset¶
In [ ]:
for root, _, files in os.walk('./template/data'):
if(files):
for f in files:
print(str(root) + "/" + f)
In [ ]:
tsp_path = './template/data'
In [ ]:
def plot_results(best_solutions, times, title):
fig = plt.figure()
nodes = [len(s) for s in best_solutions]
data = np.array([[node, time] for node, time in sorted(zip(nodes, times))])
plt.plot(data[:, 0], data[:, 1], 'o-')
fig.suptitle(title, fontsize=20)
In [ ]:
print("Random Search")
best_solutions, fitness_lists, times = TSP_Bench_ALL(tsp_path, MyRandomModel)
In [ ]:
plot_results(best_solutions, times, "Random Model")
In [ ]:
print("Uniform Cost Search")
best_solutions, fitness_lists, times = TSP_Bench_ALL(tsp_path, MyUCSModel)
In [ ]:
plot_results(best_solutions, times, "Uniform Cost Search")
In [ ]:
print("A Star Search")
best_solutions, fitness_lists, times = TSP_Bench_ALL(tsp_path, MyASModel)
In [ ]:
plot_results(best_solutions, times, "A Star Search")
In [ ]:
print("Hill-Climbing Search")
best_solutions, fitness_lists, times = TSP_Bench_ALL(tsp_path, MyHillClimbModel)
In [ ]:
plot_results(best_solutions, times, "Hill-Climbing Search")
Conclusions¶
In [ ]:
# Simple
# ulysses16: 77.12 (UCS-BFS), 77.02 (A-Star)
# att48: 39236 (UCS-BFS), 47853 (A-Star)
# st70: 761 (UCS-BFS), time-out (A-Star)
# Medium
# a280: 3088 (UCS-BFS), time-out (A-Star)
# pcb442: 58952 (UCS-BFS), time-out (A-Star)
# Hard
# dsj1000: time-out (UCS-BFS), 542,620,572 (Hill-Climbing)
1. UCS is the slowest one, and gets the same result as BFS, DFS, DP
1. A-Star can only solve problems with number of cities < 50.
2. Hill-Climbing gets different results every time (Heuristic).
3. Hill-Climbing is the fastest one till now. (faster than Dynamic Programming, but worse results).
In [ ]: