EMOA/README.md

1008 B
Raw Blame History

EMOA

Benchmarks of Evolutionary multi-objective optimization algorithms (EMOA) on Real-world Multi-objective Optimization Problem Suite.

Quick Start

Creating the environment

conda create -n pymoo python=3.8
conda activate pymoo
pip install -U pymoo

Change the test problem in main.py

python main.py

Benchmark

population size: 100 number of generations: 200

CRE-2-3-1

Time (s): CTAEA 6.297407865524292 NSGA2 9.709688425064087 NSGA3 13.19536280632019

CRE-2-4-2

Time (s): CTAEA 5.5211687088012695 NSGA2 8.863621950149536 NSGA3 12.693290948867798

CRE-2-4-3

Time (s): CTAEA 5.683619022369385 NSGA2 9.352391481399536 NSGA3 13.239986419677734

CRE-2-7-4

Time (s): CTAEA 6.6659016609191895 NSGA2 10.643601417541504 NSGA3 14.66565227508545

CRE-2-4-5

Time (s): CTAEA 5.434146165847778 NSGA2 10.283865928649902 NSGA3 15.255037069320679