Add benchmark results
This commit is contained in:
parent
40fc17ac5e
commit
249ac91ffe
|
|
@ -0,0 +1,68 @@
|
|||
# EMOA
|
||||
|
||||
Benchmarks of Evolutionary multi-objective optimization algorithms (EMOA) on Real-world Multi-objective
|
||||
Optimization Problem Suite.
|
||||
|
||||
## Quick Start
|
||||
|
||||
Creating the environment:
|
||||
|
||||
```
|
||||
conda create -n pymoo python=3.8
|
||||
conda activate pymoo
|
||||
pip install -U pymoo
|
||||
```
|
||||
|
||||
Change the test problem in `main.py`
|
||||
|
||||
```
|
||||
python main.py
|
||||
```
|
||||
|
||||
## Benchmark
|
||||
|
||||
> population size: 100
|
||||
> number of generations: 200
|
||||
|
||||
#### CRE-2-3-1
|
||||
|
||||
Time (s):
|
||||
CTAEA 6.297407865524292
|
||||
NSGA2 9.709688425064087
|
||||
NSGA3 13.19536280632019
|
||||
|
||||

|
||||
|
||||
#### CRE-2-4-2
|
||||
|
||||
Time (s):
|
||||
CTAEA 5.5211687088012695
|
||||
NSGA2 8.863621950149536
|
||||
NSGA3 12.693290948867798
|
||||
|
||||
#### CRE-2-4-3
|
||||
|
||||
Time (s):
|
||||
CTAEA 5.683619022369385
|
||||
NSGA2 9.352391481399536
|
||||
NSGA3 13.239986419677734
|
||||
|
||||

|
||||
|
||||
#### CRE-2-7-4
|
||||
|
||||
Time (s):
|
||||
CTAEA 6.6659016609191895
|
||||
NSGA2 10.643601417541504
|
||||
NSGA3 14.66565227508545
|
||||
|
||||

|
||||
|
||||
#### CRE-2-4-5
|
||||
|
||||
Time (s):
|
||||
CTAEA 5.434146165847778
|
||||
NSGA2 10.283865928649902
|
||||
NSGA3 15.255037069320679
|
||||
|
||||

|
||||
Binary file not shown.
|
After Width: | Height: | Size: 55 KiB |
Binary file not shown.
|
After Width: | Height: | Size: 54 KiB |
Binary file not shown.
|
After Width: | Height: | Size: 50 KiB |
Binary file not shown.
|
After Width: | Height: | Size: 30 KiB |
Binary file not shown.
|
After Width: | Height: | Size: 48 KiB |
|
|
@ -0,0 +1,59 @@
|
|||
from cProfile import label
|
||||
from pymoo.algorithms.moo.nsga2 import NSGA2
|
||||
from pymoo.algorithms.moo.ctaea import CTAEA
|
||||
from pymoo.algorithms.moo.nsga3 import NSGA3
|
||||
|
||||
from pymoo.factory import get_reference_directions
|
||||
from pymoo.optimize import minimize
|
||||
|
||||
from pymoo.visualization.scatter import Scatter
|
||||
from reproblem import *
|
||||
|
||||
import time
|
||||
|
||||
# Define the problem
|
||||
problem = CRE25() # CRE21() CRE22() CRE23() CRE24() CRE25()
|
||||
|
||||
ref_dirs = get_reference_directions("das-dennis", 2, n_partitions=64)
|
||||
|
||||
# Define Algorithms
|
||||
nsga_2_alg = NSGA2(pop_size=100)
|
||||
nsga_3_alg = NSGA3(pop_size=100, ref_dirs=ref_dirs)
|
||||
ctaea_alg = CTAEA(ref_dirs=ref_dirs)
|
||||
|
||||
# C-TAEA
|
||||
start = time.time()
|
||||
res_ctaea = minimize(problem,
|
||||
ctaea_alg,
|
||||
('n_gen', 200),
|
||||
seed=1,
|
||||
verbose=False)
|
||||
end = time.time()
|
||||
print('CTAEA', end - start)
|
||||
|
||||
# NSGA-II
|
||||
res_nsga_2 = minimize(problem,
|
||||
nsga_2_alg,
|
||||
('n_gen', 200),
|
||||
seed=1,
|
||||
verbose=False)
|
||||
end = time.time()
|
||||
print('NSGA2', end - start)
|
||||
|
||||
# NSGA-III
|
||||
res_nsga_3 = minimize(problem,
|
||||
nsga_3_alg,
|
||||
('n_gen', 200),
|
||||
seed=1,
|
||||
verbose=False)
|
||||
end = time.time()
|
||||
print('NSGA3', end - start)
|
||||
|
||||
# Plot the results
|
||||
plot = Scatter(title="Approximated Pareto fronts of the CRE2-4-5", legend=True)
|
||||
|
||||
plot.add(res_ctaea.F, facecolor="none", edgecolor="blue", label="C-TAEA")
|
||||
plot.add(res_nsga_2.F, facecolor="none", edgecolor="red", label="NSGA-II")
|
||||
plot.add(res_nsga_3.F, facecolor="none", edgecolor="yellow", label="NSGA-III")
|
||||
|
||||
plot.show()
|
||||
|
|
@ -1,29 +0,0 @@
|
|||
from pymoo.algorithms.moo.nsga2 import NSGA2
|
||||
from pymoo.algorithms.moo.ctaea import CTAEA
|
||||
from pymoo.algorithms.moo.nsga3 import NSGA3
|
||||
|
||||
from pymoo.factory import get_reference_directions
|
||||
from pymoo.optimize import minimize
|
||||
|
||||
from pymoo.visualization.scatter import Scatter
|
||||
from reproblem import *
|
||||
|
||||
problem = CRE22()
|
||||
ref_dirs = get_reference_directions("das-dennis", 2, n_partitions=64)
|
||||
|
||||
algorithm = NSGA2(pop_size=100)
|
||||
algorithm = NSGA3(pop_size=92,
|
||||
ref_dirs=ref_dirs)
|
||||
# IBEA
|
||||
algorithm = CTAEA(ref_dirs=ref_dirs)
|
||||
|
||||
res = minimize(problem,
|
||||
algorithm,
|
||||
('n_gen', 200),
|
||||
seed=1,
|
||||
verbose=False)
|
||||
|
||||
plot = Scatter()
|
||||
plot.add(problem.pareto_front(), plot_type="line", color="black", alpha=0.7)
|
||||
plot.add(res.F, facecolor="none", edgecolor="red")
|
||||
plot.show()
|
||||
Loading…
Reference in New Issue