ECMM426-Template/Question 4-6.ipynb

14 KiB

None <html> <head> </head>

Question 4 (10 marks)

In [1]:
import torch
import torch.nn.functional as F
from ca_utils import ResNet, BasicBlock
In [2]:
model = ResNet(block=BasicBlock, layers=[1, 1, 1], num_classes=10)

Load the Model

In [3]:
checkpoint = torch.load("data/weights_resnet.pth", map_location=torch.device('cpu'))

model.load_state_dict(checkpoint)
model.eval()
Out[3]:
ResNet(
  (conv1): Conv2d(3, 16, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
  (bn1): BatchNorm2d(16, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
  (relu): ReLU(inplace=True)
  (layer1): Sequential(
    (0): BasicBlock(
      (conv1): Conv2d(16, 16, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      (bn1): BatchNorm2d(16, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (relu): ReLU(inplace=True)
      (conv2): Conv2d(16, 16, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      (bn2): BatchNorm2d(16, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    )
  )
  (layer2): Sequential(
    (0): BasicBlock(
      (conv1): Conv2d(16, 32, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
      (bn1): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (relu): ReLU(inplace=True)
      (conv2): Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      (bn2): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (downsample): Sequential(
        (0): Conv2d(16, 32, kernel_size=(1, 1), stride=(2, 2), bias=False)
        (1): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      )
    )
  )
  (layer3): Sequential(
    (0): BasicBlock(
      (conv1): Conv2d(32, 64, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
      (bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (relu): ReLU(inplace=True)
      (conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      (bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (downsample): Sequential(
        (0): Conv2d(32, 64, kernel_size=(1, 1), stride=(2, 2), bias=False)
        (1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      )
    )
  )
  (avgpool): AdaptiveAvgPool2d(output_size=1)
  (fc): Linear(in_features=64, out_features=10, bias=True)
)

Question 5 (15 marks)

In [4]:
import torchvision
from torch.utils.data import DataLoader
from torchvision import transforms

device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
In [5]:
image_transform = transforms.Compose(
    [transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])

# image_transform = transforms.Compose([
# #     transforms.Resize(256),
# #     transforms.CenterCrop(224),
#     transforms.ToTensor(),
#     transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
# ])

test_data = torchvision.datasets.ImageFolder('data/EXCV10/val/', transform=image_transform)
test_loader = DataLoader(test_data, batch_size=64, shuffle=False, num_workers=4, pin_memory=True)

Method 1

In [6]:
import numpy as np
In [7]:
def m1_test_cnn(model, test_loader):

    model.to(device)
    model.eval()

    correct = 0
    total = 0
    all_predicted_labels = []

    with torch.no_grad():
        for images, labels in test_loader:

            # Make predictions
            images, labels = images.to(device), labels.to(device)
            outputs = model(images)

            _, predicted = torch.max(outputs.data, 1)

            # Save results
            total += labels.size(0)
            correct += (predicted == labels).sum().item()
            
            all_predicted_labels.append(predicted.cpu().numpy())

    accuracy = 100 * correct / total
    all_predicted_labels = np.concatenate(all_predicted_labels)

    return all_predicted_labels, accuracy
In [8]:
m1_predicted_labels, m1_test_accuracy = m1_test_cnn(model, test_loader)
print(f'Test Accuracy: {m1_test_accuracy}%')
Test Accuracy: 70.05%

Put Students' implementations here

In [9]:
def test_cnn(model, test_loader, device='cpu'):
    model.to(device)
    model.eval() 
    total = 0
    correct_num = 0
    all_predicted_labels = []

    with torch.no_grad():  # No need to track gradients for testing
        for images, labels in test_loader:
            images, labels = images.to(device), labels.to(device)
            outputs = model(images)
            _, predicted = torch.max(outputs.data, 1)
            total += labels.size(0)
            correct_num += (predicted == labels).sum().item()  
            all_predicted_labels.append(predicted.cpu().numpy())

    accuracy = (correct_num / total) * 100
    all_predicted_labels = np.concatenate(all_predicted_labels)
    return  all_predicted_labels, accuracy
In [10]:
predicted_labels, test_accuracy = test_cnn(model, test_loader)
print(f'Test Accuracy: {test_accuracy}%')
Test Accuracy: 70.05%

Test (Should output ALL PASS)

In [11]:
assert np.allclose(predicted_labels, m1_predicted_labels)
assert np.allclose(test_accuracy, m1_test_accuracy)

print("Test accuracy: ", test_accuracy)

if (test_accuracy >= 75):
    print("Score 100%:", 15 * 1.0)
elif (test_accuracy >= 70):
    print("Score 90%:", 15 * 0.90)
elif (test_accuracy >= 65):
    print("Score 80%:", 15 * 0.80)
elif (test_accuracy >= 60):
    print("Score 70%:", 15 * 0.70)
elif (test_accuracy >= 55):
    print("Score 60%:", 15 * 0.60)
elif (test_accuracy >= 50):
    print("Score 50%:", 15 * 0.50)
else:
    print("Accuracy less than 50%")
print("ALL PASS")
Test accuracy:  70.05
Score 90%: 13.5
ALL PASS

Question 6 (6 marks)

In [12]:
true_labels = []

for images, labels in test_loader:
    images, labels = images.to(device), labels.to(device)
    true_labels.extend(labels.cpu().numpy())
    
true_labels = np.array(true_labels)
In [13]:
def m1_compute_confusion_matrix(true, predictions):
    unique_labels = np.unique(np.concatenate((true, predictions)))

    confusion_mat = np.zeros((len(unique_labels), len(unique_labels)), dtype=np.int64)

    label_to_index = {label: index for index,
                      label in enumerate(unique_labels)}

    for t, p in zip(true, predictions):
        t_index = label_to_index[t]
        p_index = label_to_index[p]
        confusion_mat[t_index][p_index] += 1

    return confusion_mat
In [14]:
m1_confusion_matrix = m1_compute_confusion_matrix(true_labels, m1_predicted_labels)
In [17]:
from sklearn.metrics import confusion_matrix

def m2_compute_confusion_matrix(true, predictions):
    return confusion_matrix(true, predictions)
In [18]:
m2_confusion_matrix = m2_compute_confusion_matrix(true_labels, m1_predicted_labels)

Put Students' implementations here

In [19]:
def compute_confusion_matrix(true, predictions):
    unique_labels = np.unique(np.concatenate((true, predictions)))
    confusion_matrix = np.zeros((len(unique_labels), len(unique_labels)), dtype=np.int64)
    for i, true_label in enumerate(unique_labels):
        for j, predicted_label in enumerate(unique_labels):
            confusion_matrix[i, j] = np.sum((true == true_label) & (predictions == predicted_label))
    return confusion_matrix
In [20]:
confusion_matrix = compute_confusion_matrix(true_labels, predicted_labels)

Test (Should output ALL PASS)

In [21]:
assert np.allclose(m1_confusion_matrix, m2_confusion_matrix)
assert np.allclose(confusion_matrix, m1_confusion_matrix)

print("ALL PASS")
ALL PASS
In [ ]:

</html>