com2014-template/template/model/my_model_HillClimb.py

76 lines
2.3 KiB
Python

import math
import random
import numpy as np
from model.base_model import Model
class MyHillClimbModel(Model):
def __init__(self):
super().__init__()
def init(self, nodes):
"""
Put your initialization here.
"""
super().init(nodes)
def random_tour(self):
return np.random.permutation(self.N).tolist()
def all_pairs(self, size, shuffle=random.shuffle):
r1 = list(range(size))
r2 = list(range(size))
if shuffle:
shuffle(r1)
shuffle(r2)
for i in r1:
for j in r2:
yield (i,j)
def move_operator(self, tour):
'''generator to return all possible variations
where the section between two cities are swapped'''
for i,j in self.all_pairs(len(tour)):
if i != j:
copy=tour[:]
if i < j:
copy[i:j+1]=reversed(tour[i:j+1])
else:
copy[i+1:]=reversed(tour[:j])
copy[:j]=reversed(tour[i+1:])
if copy != tour: # no point returning the same tour
yield copy
def fit(self, max_it=100):
"""
Put your iteration process here.
"""
self.best_solution = self.random_tour()
best_score = -self.fitness(self.best_solution)
num_evaluations = 0
while num_evaluations < max_it:
# examine moves around our current position
move_made = False
for next_solution in self.move_operator(self.best_solution):
if num_evaluations >= max_it:
print("Max iteration reached:", max_it)
break
# see if this move is better than the current
next_score = -self.fitness(next_solution)
num_evaluations += 1
if next_score > best_score:
self.best_solution = next_solution
self.fitness_list.append(self.fitness(self.best_solution))
best_score=next_score
move_made=True
break # depth first search
if not move_made:
break # we couldn't find a better move (must be at a local maximum)
return self.best_solution, self.fitness_list