com2014-template/template/model/my_model_DPB.py

64 lines
1.9 KiB
Python

import math
import random
from model.base_model import Model
class MyDPBModel(Model):
def __init__(self):
super().__init__()
def init(self, nodes):
"""
Put your initialization here.
"""
super().init(nodes)
def getMST(self, node):
MST = []
distances = []
for i in range(0, self.N):
if i != node:
MST.append(i)
distances.append(self.dist(node, i))
return [x for _,x in sorted(zip(distances, MST))]
def fit(self, max_it=1000):
"""
Put your iteration process here.
"""
MST_solutions = []
for i in range(0, self.N):
solution = [i]
MST_solutions.append(solution)
MSTs = []
for i in range(0, self.N):
MSTs.append([-1] * self.N)
# Breadth First: Set each city as starting point, then go to next city simultaneously
for step in range(0, self.N - 1):
# print("[step]", step)
unvisited_list = list(range(0, self.N))
# For each search path
for i in range(0, self.N):
cur_city = MST_solutions[i][-1]
unvisited_list = list( set(range(0, self.N)) - set(MST_solutions[i]) )
if MSTs[cur_city][0] == -1:
MST = self.getMST(cur_city)
MSTs[cur_city] = MST
for j in MSTs[cur_city]:
if(j in unvisited_list):
MST_solutions[i].append(j)
break
for i in range(0, self.N):
self.fitness_list.append(self.fitness(MST_solutions[i]))
self.best_solution = MST_solutions[ self.fitness_list.index(min(self.fitness_list)) ]
self.fitness_list.append(self.fitness(self.best_solution))
return self.best_solution, self.fitness_list