com2014-template/template/model/my_model_AS.py

77 lines
2.5 KiB
Python

import math
import random
from model.base_model import Model
class MyASModel(Model):
def __init__(self):
super().__init__()
def init(self, nodes):
"""
Put your initialization here.
"""
super().init(nodes)
def getMST(self, node):
MST = []
distances = []
for i in range(0, self.N):
if i != node:
MST.append(i)
distances.append(self.dist(node, i))
return [x for _,x in sorted(zip(distances, MST))]
def fit(self, max_it=1000):
"""
Put your iteration process here.
"""
MST_solutions = []
for i in range(0, self.N):
solution = [i]
MST_solutions.append(solution)
# Breadth First: Set each city as starting point, then go to next city simultaneously
for step in range(0, self.N - 1):
# print("[step]", step)
unvisited_list = list(range(0, self.N))
# For each search path
for i in range(0, self.N):
cur_city = MST_solutions[i][-1]
unvisited_list = list( set(range(0, self.N)) - set(MST_solutions[i]) )
closest_neighbour = -1
min_f = math.inf
for j in unvisited_list:
g = self.dist(cur_city, j)
sub_unvisited_list = unvisited_list.copy()
sub_unvisited_list.remove(j)
sub_cur_city = self.getMST(j)[0]
h = 0
while len(sub_unvisited_list) > 0:
if(len(unvisited_list) == 2):
break
else:
for k in self.getMST(sub_cur_city):
if k in sub_unvisited_list:
h = h + self.dist(sub_cur_city, k)
sub_cur_city = k
sub_unvisited_list.remove(k)
break
# Get f(x) = g(x) + h(x)
f = g + h
if(f < min_f):
closest_neighbour = j
min_f = f
MST_solutions[i].append(closest_neighbour)
for i in range(0, self.N):
self.fitness_list.append(self.fitness(MST_solutions[i]))
self.best_solution = MST_solutions[ self.fitness_list.index(min(self.fitness_list)) ]
return self.best_solution, self.fitness_list