import math import random from model.base_model import Model class MyDPDModel(Model): def __init__(self): super().__init__() def init(self, nodes): """ Put your initialization here. """ super().init(nodes) def getMST(self, node): MST = [] distances = [] for i in range(0, self.N): if i != node: MST.append(i) distances.append(self.dist(node, i)) return [x for _,x in sorted(zip(distances, MST))] def fit(self, max_it=1000): """ Put your iteration process here. """ MST_solutions = [] # Depth First: Set one city as starting point, iterate to the end, then select next city as starting point. MSTs = [] for i in range(0, self.N): MSTs.append([-1] * self.N) for i in range(0, self.N): solution = [] solution.append(i) unvisited_list = list(range(0, self.N)) cur_city = i # print("[starting]", i) for steps in range(self.N - 1): # print(unvisited_list) unvisited_list.remove(cur_city) if MSTs[cur_city][0] == -1: MST = self.getMST(cur_city) MSTs[cur_city] = MST for j in MSTs[cur_city]: if(j in unvisited_list): solution.append(j) cur_city = j break # print(solution) MST_solutions.append(solution) self.fitness_list.append(self.fitness(solution)) self.best_solution = MST_solutions[ self.fitness_list.index(min(self.fitness_list)) ] return self.best_solution, self.fitness_list