import math import random from model.base_model import Model class SimAnneal(Model): def __init__(self, T=-1, alpha=-1, stopping_T=-1): super().__init__() self.iteration = 0 self.T = T self.alpha = 0.995 if alpha == -1 else alpha self.stopping_temperature = 1e-8 if stopping_T == -1 else stopping_T def init(self, coords): super().init(coords) if (self.T == -1): self.T = math.sqrt(self.N) self.T_save = self.T # save inital T to reset if batch annealing is used def initial_solution(self): """ Greedy algorithm to get an initial solution (closest-neighbour). """ cur_node = random.choice(self.nodes) # start from a random node solution = [cur_node] free_nodes = set(self.nodes) free_nodes.remove(cur_node) while free_nodes: next_node = min(free_nodes, key=lambda x: self.dist(cur_node, x)) # nearest neighbour free_nodes.remove(next_node) solution.append(next_node) cur_node = next_node cur_fit = self.fitness(solution) if cur_fit < self.best_fitness: # If best found so far, update best fitness self.best_fitness = cur_fit self.best_solution = solution self.fitness_list.append(cur_fit) return solution, cur_fit def p_accept(self, candidate_fitness): """ Probability of accepting if the candidate is worse than current. Depends on the current temperature and difference between candidate and current. """ return math.exp(-abs(candidate_fitness - self.cur_fitness) / self.T) def accept(self, candidate): """ Accept with probability 1 if candidate is better than current. Accept with probabilty p_accept(..) if candidate is worse. """ candidate_fitness = self.fitness(candidate) if candidate_fitness < self.cur_fitness: self.cur_fitness, self.cur_solution = candidate_fitness, candidate if candidate_fitness < self.best_fitness: self.best_fitness, self.best_solution = candidate_fitness, candidate else: if random.random() < self.p_accept(candidate_fitness): self.cur_fitness, self.cur_solution = candidate_fitness, candidate def fit(self, max_it=1000): """ Execute simulated annealing algorithm. """ # Initialize with the greedy solution. self.cur_solution, self.cur_fitness = self.initial_solution() self.log("Starting annealing.") while self.T >= self.stopping_temperature and self.iteration < max_it: candidate = list(self.cur_solution) l = random.randint(2, self.N - 1) i = random.randint(0, self.N - l) candidate[i : (i + l)] = reversed(candidate[i : (i + l)]) self.accept(candidate) self.T *= self.alpha self.iteration += 1 self.fitness_list.append(self.cur_fitness) self.log(f"Best fitness obtained: {self.best_fitness}") improvement = 100 * (self.fitness_list[0] - self.best_fitness) / (self.fitness_list[0]) self.log(f"Improvement over greedy heuristic: {improvement : .2f}%") return self.best_solution, self.fitness_list