EMOA/main.py

60 lines
1.6 KiB
Python

from cProfile import label
from pymoo.algorithms.moo.nsga2 import NSGA2
from pymoo.algorithms.moo.ctaea import CTAEA
from pymoo.algorithms.moo.nsga3 import NSGA3
from pymoo.factory import get_reference_directions
from pymoo.optimize import minimize
from pymoo.visualization.scatter import Scatter
from reproblem import *
import time
# Define the problem
problem = CRE25() # CRE21() CRE22() CRE23() CRE24() CRE25()
ref_dirs = get_reference_directions("das-dennis", 2, n_partitions=64)
# Define Algorithms
nsga_2_alg = NSGA2(pop_size=100)
nsga_3_alg = NSGA3(pop_size=100, ref_dirs=ref_dirs)
ctaea_alg = CTAEA(ref_dirs=ref_dirs)
# C-TAEA
start = time.time()
res_ctaea = minimize(problem,
ctaea_alg,
('n_gen', 200),
seed=1,
verbose=False)
end = time.time()
print('CTAEA', end - start)
# NSGA-II
res_nsga_2 = minimize(problem,
nsga_2_alg,
('n_gen', 200),
seed=1,
verbose=False)
end = time.time()
print('NSGA2', end - start)
# NSGA-III
res_nsga_3 = minimize(problem,
nsga_3_alg,
('n_gen', 200),
seed=1,
verbose=False)
end = time.time()
print('NSGA3', end - start)
# Plot the results
plot = Scatter(title="Approximated Pareto fronts of the CRE2-4-5", legend=True)
plot.add(res_ctaea.F, facecolor="none", edgecolor="blue", label="C-TAEA")
plot.add(res_nsga_2.F, facecolor="none", edgecolor="red", label="NSGA-II")
plot.add(res_nsga_3.F, facecolor="none", edgecolor="yellow", label="NSGA-III")
plot.show()