# EMOA Benchmarks of Evolutionary multi-objective optimization algorithms (EMOA) on Real-world Multi-objective Optimization Problem Suite. ## Quick Start Creating the environment: ``` conda create -n pymoo python=3.8 conda activate pymoo pip install -U pymoo ``` Change the test problem in `main.py` ``` python main.py ``` ## Benchmark > population size: 100 > number of generations: 200 #### CRE-2-3-1 ``` Time (s): CTAEA 6.297407865524292 NSGA2 9.709688425064087 NSGA3 13.19536280632019 ``` ![](images/CRE-2-3-1.png) #### CRE-2-4-2 ``` Time (s): CTAEA 5.5211687088012695 NSGA2 8.863621950149536 NSGA3 12.693290948867798 ``` #### CRE-2-4-3 ``` Time (s): CTAEA 5.683619022369385 NSGA2 9.352391481399536 NSGA3 13.239986419677734 ``` ![](images/CRE-2-4-3.png) #### CRE-2-7-4 ``` Time (s): CTAEA 6.6659016609191895 NSGA2 10.643601417541504 NSGA3 14.66565227508545 ``` ![](images/CRE-2-7-4.png) #### CRE-2-4-5 ``` Time (s): CTAEA 5.434146165847778 NSGA2 10.283865928649902 NSGA3 15.255037069320679 ``` ![](images/CRE-2-4-5.png)