{ "cells": [ { "cell_type": "markdown", "id": "a619e638", "metadata": {}, "source": [ "## Question 7 - YOLOv8" ] }, { "cell_type": "code", "execution_count": 1, "id": "cb626037", "metadata": {}, "outputs": [], "source": [ "import cv2\n", "import torch\n", "import numpy as np\n", "from collections import Counter\n", "import matplotlib.pyplot as plt\n", "\n", "from ultralytics import YOLO\n", "\n", "import os\n", "import glob\n", "from tqdm import tqdm" ] }, { "cell_type": "code", "execution_count": 2, "id": "39beaeb6", "metadata": {}, "outputs": [], "source": [ "MODEL_NAME = \"data/yolov8.pt\"" ] }, { "cell_type": "markdown", "id": "78f8f8d3", "metadata": {}, "source": [ "## Load the dataset" ] }, { "cell_type": "code", "execution_count": 3, "id": "f920de25", "metadata": {}, "outputs": [], "source": [ "val_labels = \"./data/MaskedFace/val/labels\"\n", "val_imgs = \"./data/MaskedFace/val/images\"\n", "\n", "y_true = glob.glob(os.path.join(val_labels,\"*.txt\"))\n", "y_true.sort()\n", "\n", "images = glob.glob(os.path.join(val_imgs,\"*.png\"))\n", "images.sort()" ] }, { "cell_type": "code", "execution_count": 4, "id": "78f3faca", "metadata": {}, "outputs": [], "source": [ "test_dataset = {\n", " 'images': images, # list of image paths\n", " 'y_true': y_true, # list of label paths\n", "}" ] }, { "cell_type": "code", "execution_count": 5, "id": "dace1605", "metadata": {}, "outputs": [], "source": [ "def count_obj(txt_file, n_class):\n", " with open(txt_file, 'r') as file:\n", " lines = file.readlines()\n", " # Extracting the class identifiers from each line\n", " class_ids = [int(line.split()[0]) for line in lines]\n", "\n", " # Counting the occurrences of each class\n", " class_counts = Counter(class_ids)\n", "\n", " # Sorting the dictionary by class id and converting it to a list of counts\n", " sorted_counts = [class_counts[i] if i in class_counts else 0 for i in range(n_class)]\n", " return sorted_counts" ] }, { "cell_type": "code", "execution_count": 6, "id": "bfc50534", "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "85it [00:00, 7354.03it/s]\n" ] } ], "source": [ "gt_counts = []\n", "for idx , (img , txt) in enumerate(tqdm(zip(test_dataset['images'], test_dataset['y_true']))):\n", " # get ground truth\n", " obj_count = count_obj(txt, 3)\n", " gt_counts.append(obj_count)" ] }, { "cell_type": "markdown", "id": "44602de6", "metadata": {}, "source": [ "## Load the model" ] }, { "cell_type": "code", "execution_count": 7, "id": "e5ff04e4", "metadata": {}, "outputs": [], "source": [ "model = YOLO(MODEL_NAME)" ] }, { "cell_type": "markdown", "id": "5ea8aa59", "metadata": {}, "source": [ "## Test on the validation set" ] }, { "cell_type": "code", "execution_count": 8, "id": "3d15ae87", "metadata": {}, "outputs": [], "source": [ "from collections import Counter\n", "\n", "def calculate_mape(actual, forecast):\n", " if len(actual) != len(forecast):\n", " raise ValueError(\"The length of actual and forecast arrays must be the same.\")\n", " \n", " n = len(actual)\n", " sum_error = 0\n", " \n", " for a, f in zip(actual, forecast):\n", " sum_error += abs(a - f) / max(a, 1)\n", " \n", " mape_value = (sum_error / n) * 100\n", " return mape_value\n", "\n", "def count_masks(model, dataset):\n", " n_class = 3\n", " mape_scores = []\n", " all_pred_counts = []\n", " all_obj_counts = []\n", " for idx , (img , txt) in enumerate(tqdm(zip(dataset['images'],dataset['y_true']))):\n", " # get predicted list\n", " preds = model.predict(img)\n", " pred = preds[0]\n", " predict_list = [ box.cls[0].item() for box in pred.boxes]\n", " count = Counter(predict_list)\n", " predict_count = [count[i] if i in count else 0 for i in range(n_class)]\n", " # get ground truth\n", " obj_count = count_obj(txt, n_class)\n", " all_obj_counts.append(obj_count)\n", " all_pred_counts.append(predict_count)\n", "\n", " '''\n", " After the model was trained, I just found that I defined the format class in data.yaml is [without_mask, with_mask, mask_weared_incorrect] which is wrong in order. \n", " Therefore, I will swap the true label and predicted label to [with_mask, without_mask, mask_weared_incorrect] in the count_masks function to return the values should respectively indicate the number of faces wearing mask, without mask and incorrectly wearing mask.\n", " The reason why I did not correct the data.yaml and train the model again because of the limitation of time.\n", " '''\n", " all_pred_counts = np.array(all_pred_counts)\n", " all_obj_counts = np.array(all_obj_counts)\n", "\n", "# all_pred_counts[:, [0, 1]] = all_pred_counts[:, [1, 0]]\n", "# all_obj_counts[:, [0, 1]] = all_obj_counts[:, [1, 0]]\n", "\n", " mape_scores = [calculate_mape(a, p) for a, p in zip(all_obj_counts, all_pred_counts)]\n", "\n", " # Convert all_pred_counts to int64 before returning\n", " all_pred_counts = all_pred_counts.astype(np.int64)\n", " \n", " return np.array(all_pred_counts), np.mean(mape_scores)" ] }, { "cell_type": "code", "execution_count": 9, "id": "1428b97d", "metadata": { "scrolled": true }, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "\r", "0it [00:00, ?it/s]" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\n", "image 1/1 /home/wuhanstudio/Documents/Marking/Template/data/MaskedFace/val/images/mask-023.png: 480x640 1 with_mask, 4.3ms\n", "Speed: 1.5ms preprocess, 4.3ms inference, 0.8ms postprocess per image at shape (1, 3, 480, 640)\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "\r", "1it [00:01, 1.65s/it]" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\n", "image 1/1 /home/wuhanstudio/Documents/Marking/Template/data/MaskedFace/val/images/mask-819.png: 384x640 1 with_mask, 4.4ms\n", "Speed: 0.8ms preprocess, 4.4ms inference, 0.6ms postprocess per image at shape (1, 3, 384, 640)\n", "\n", "image 1/1 /home/wuhanstudio/Documents/Marking/Template/data/MaskedFace/val/images/mask-131.png: 448x640 4 with_masks, 2 without_masks, 4.2ms\n", "Speed: 0.8ms preprocess, 4.2ms inference, 0.7ms postprocess per image at shape (1, 3, 448, 640)\n", "\n", "image 1/1 /home/wuhanstudio/Documents/Marking/Template/data/MaskedFace/val/images/mask-032.png: 384x640 2 with_masks, 4.0ms\n", "Speed: 0.8ms preprocess, 4.0ms inference, 0.6ms postprocess per image at shape (1, 3, 384, 640)\n", "\n", "image 1/1 /home/wuhanstudio/Documents/Marking/Template/data/MaskedFace/val/images/mask-256.png: 448x640 13 with_masks, 4.0ms\n", "Speed: 0.8ms preprocess, 4.0ms inference, 0.7ms postprocess per image at shape (1, 3, 448, 640)\n", "\n", "image 1/1 /home/wuhanstudio/Documents/Marking/Template/data/MaskedFace/val/images/mask-201.png: 384x640 12 with_masks, 4.0ms\n", "Speed: 0.7ms preprocess, 4.0ms inference, 0.7ms postprocess per image at shape (1, 3, 384, 640)\n", "\n", "image 1/1 /home/wuhanstudio/Documents/Marking/Template/data/MaskedFace/val/images/mask-610.png: 352x640 5 with_masks, 4.3ms\n", "Speed: 0.7ms preprocess, 4.3ms inference, 0.7ms postprocess per image at shape (1, 3, 352, 640)\n", "\n", "image 1/1 /home/wuhanstudio/Documents/Marking/Template/data/MaskedFace/val/images/mask-143.png: 640x512 1 with_mask, 4.4ms\n", "Speed: 0.9ms preprocess, 4.4ms inference, 0.6ms postprocess per image at shape (1, 3, 640, 512)\n", "\n", "image 1/1 /home/wuhanstudio/Documents/Marking/Template/data/MaskedFace/val/images/mask-323.png: 608x640 2 with_masks, 4.3ms\n", "Speed: 1.1ms preprocess, 4.3ms inference, 0.7ms postprocess per image at shape (1, 3, 608, 640)\n", "\n", "image 1/1 /home/wuhanstudio/Documents/Marking/Template/data/MaskedFace/val/images/mask-383.png: 640x512 1 with_mask, 4.0ms\n", "Speed: 1.0ms preprocess, 4.0ms inference, 0.6ms postprocess per image at shape (1, 3, 640, 512)\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "\r", "10it [00:01, 7.73it/s]" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\n", "image 1/1 /home/wuhanstudio/Documents/Marking/Template/data/MaskedFace/val/images/mask-307.png: 384x640 2 with_masks, 1 mask_weared_incorrect, 4.2ms\n", "Speed: 0.7ms preprocess, 4.2ms inference, 0.6ms postprocess per image at shape (1, 3, 384, 640)\n", "\n", "image 1/1 /home/wuhanstudio/Documents/Marking/Template/data/MaskedFace/val/images/mask-011.png: 448x640 26 with_masks, 1 mask_weared_incorrect, 4.0ms\n", "Speed: 0.9ms preprocess, 4.0ms inference, 0.7ms postprocess per image at shape (1, 3, 448, 640)\n", "\n", "image 1/1 /home/wuhanstudio/Documents/Marking/Template/data/MaskedFace/val/images/mask-043.png: 640x448 1 with_mask, 4.2ms\n", "Speed: 0.9ms preprocess, 4.2ms inference, 0.6ms postprocess per image at shape (1, 3, 640, 448)\n", "\n", "image 1/1 /home/wuhanstudio/Documents/Marking/Template/data/MaskedFace/val/images/mask-098.png: 448x640 4 with_masks, 1 without_mask, 4.0ms\n", "Speed: 0.8ms preprocess, 4.0ms inference, 0.7ms postprocess per image at shape (1, 3, 448, 640)\n", "\n", "image 1/1 /home/wuhanstudio/Documents/Marking/Template/data/MaskedFace/val/images/mask-368.png: 448x640 9 with_masks, 3.8ms\n", "Speed: 0.9ms preprocess, 3.8ms inference, 0.7ms postprocess per image at shape (1, 3, 448, 640)\n", "\n", "image 1/1 /home/wuhanstudio/Documents/Marking/Template/data/MaskedFace/val/images/mask-802.png: 448x640 4 with_masks, 3.8ms\n", "Speed: 0.9ms preprocess, 3.8ms inference, 0.7ms postprocess per image at shape (1, 3, 448, 640)\n", "\n", "image 1/1 /home/wuhanstudio/Documents/Marking/Template/data/MaskedFace/val/images/mask-461.png: 448x640 8 with_masks, 3.9ms\n", "Speed: 0.9ms preprocess, 3.9ms inference, 0.8ms postprocess per image at shape (1, 3, 448, 640)\n", "\n", "image 1/1 /home/wuhanstudio/Documents/Marking/Template/data/MaskedFace/val/images/mask-574.png: 384x640 5 with_masks, 4.1ms\n", "Speed: 0.7ms preprocess, 4.1ms inference, 0.7ms postprocess per image at shape (1, 3, 384, 640)\n", "\n", "image 1/1 /home/wuhanstudio/Documents/Marking/Template/data/MaskedFace/val/images/mask-226.png: 384x640 1 with_mask, 3.7ms\n", "Speed: 0.7ms preprocess, 3.7ms inference, 0.6ms postprocess per image at shape (1, 3, 384, 640)\n", "\n", "image 1/1 /home/wuhanstudio/Documents/Marking/Template/data/MaskedFace/val/images/mask-444.png: 416x640 3 with_masks, 4.3ms\n", "Speed: 0.8ms preprocess, 4.3ms inference, 0.7ms postprocess per image at shape (1, 3, 416, 640)\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "\r", "20it [00:01, 16.99it/s]" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\n", "image 1/1 /home/wuhanstudio/Documents/Marking/Template/data/MaskedFace/val/images/mask-450.png: 480x640 4 with_masks, 4.0ms\n", "Speed: 0.9ms preprocess, 4.0ms inference, 0.7ms postprocess per image at shape (1, 3, 480, 640)\n", "\n", "image 1/1 /home/wuhanstudio/Documents/Marking/Template/data/MaskedFace/val/images/mask-095.png: 640x512 1 without_mask, 4.0ms\n", "Speed: 0.9ms preprocess, 4.0ms inference, 0.6ms postprocess per image at shape (1, 3, 640, 512)\n", "\n", "image 1/1 /home/wuhanstudio/Documents/Marking/Template/data/MaskedFace/val/images/mask-269.png: 480x640 2 with_masks, 4.0ms\n", "Speed: 0.9ms preprocess, 4.0ms inference, 0.7ms postprocess per image at shape (1, 3, 480, 640)\n", "\n", "image 1/1 /home/wuhanstudio/Documents/Marking/Template/data/MaskedFace/val/images/mask-555.png: 384x640 4 with_masks, 4.1ms\n", "Speed: 0.8ms preprocess, 4.1ms inference, 0.7ms postprocess per image at shape (1, 3, 384, 640)\n", "\n", "image 1/1 /home/wuhanstudio/Documents/Marking/Template/data/MaskedFace/val/images/mask-139.png: 384x640 17 with_masks, 2 without_masks, 2 mask_weared_incorrects, 3.8ms\n", "Speed: 0.9ms preprocess, 3.8ms inference, 0.7ms postprocess per image at shape (1, 3, 384, 640)\n", "\n", "image 1/1 /home/wuhanstudio/Documents/Marking/Template/data/MaskedFace/val/images/mask-080.png: 384x640 1 with_mask, 3.8ms\n", "Speed: 0.8ms preprocess, 3.8ms inference, 0.6ms postprocess per image at shape (1, 3, 384, 640)\n", "\n", "image 1/1 /home/wuhanstudio/Documents/Marking/Template/data/MaskedFace/val/images/mask-371.png: 384x640 1 with_mask, 1 mask_weared_incorrect, 3.8ms\n", "Speed: 0.7ms preprocess, 3.8ms inference, 0.7ms postprocess per image at shape (1, 3, 384, 640)\n", "\n", "image 1/1 /home/wuhanstudio/Documents/Marking/Template/data/MaskedFace/val/images/mask-554.png: 480x640 5 with_masks, 4.1ms\n", "Speed: 0.9ms preprocess, 4.1ms inference, 0.7ms postprocess per image at shape (1, 3, 480, 640)\n", "\n", "image 1/1 /home/wuhanstudio/Documents/Marking/Template/data/MaskedFace/val/images/mask-660.png: 640x512 1 without_mask, 4.1ms\n", "Speed: 0.9ms preprocess, 4.1ms inference, 0.6ms postprocess per image at shape (1, 3, 640, 512)\n", "\n", "image 1/1 /home/wuhanstudio/Documents/Marking/Template/data/MaskedFace/val/images/mask-180.png: 640x512 1 with_mask, 3.8ms\n", "Speed: 0.9ms preprocess, 3.8ms inference, 0.6ms postprocess per image at shape (1, 3, 640, 512)\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "\r", "30it [00:01, 27.19it/s]" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\n", "image 1/1 /home/wuhanstudio/Documents/Marking/Template/data/MaskedFace/val/images/mask-019.png: 384x640 3 with_masks, 2 without_masks, 1 mask_weared_incorrect, 4.1ms\n", "Speed: 0.8ms preprocess, 4.1ms inference, 0.7ms postprocess per image at shape (1, 3, 384, 640)\n", "\n", "image 1/1 /home/wuhanstudio/Documents/Marking/Template/data/MaskedFace/val/images/mask-719.png: 384x640 4 with_masks, 1 without_mask, 3.8ms\n", "Speed: 0.7ms preprocess, 3.8ms inference, 0.7ms postprocess per image at shape (1, 3, 384, 640)\n", "\n", "image 1/1 /home/wuhanstudio/Documents/Marking/Template/data/MaskedFace/val/images/mask-410.png: 448x640 18 with_masks, 2 without_masks, 1 mask_weared_incorrect, 4.1ms\n", "Speed: 0.9ms preprocess, 4.1ms inference, 0.7ms postprocess per image at shape (1, 3, 448, 640)\n", "\n", "image 1/1 /home/wuhanstudio/Documents/Marking/Template/data/MaskedFace/val/images/mask-796.png: 448x640 12 with_masks, 3.7ms\n", "Speed: 0.9ms preprocess, 3.7ms inference, 0.7ms postprocess per image at shape (1, 3, 448, 640)\n", "\n", "image 1/1 /home/wuhanstudio/Documents/Marking/Template/data/MaskedFace/val/images/mask-765.png: 640x512 1 with_mask, 4.2ms\n", "Speed: 1.0ms preprocess, 4.2ms inference, 0.6ms postprocess per image at shape (1, 3, 640, 512)\n", "\n", "image 1/1 /home/wuhanstudio/Documents/Marking/Template/data/MaskedFace/val/images/mask-305.png: 480x640 6 with_masks, 9 without_masks, 4 mask_weared_incorrects, 4.1ms\n", "Speed: 0.9ms preprocess, 4.1ms inference, 0.7ms postprocess per image at shape (1, 3, 480, 640)\n", "\n", "image 1/1 /home/wuhanstudio/Documents/Marking/Template/data/MaskedFace/val/images/mask-528.png: 640x512 1 without_mask, 4.1ms\n", "Speed: 1.0ms preprocess, 4.1ms inference, 0.7ms postprocess per image at shape (1, 3, 640, 512)\n", "\n", "image 1/1 /home/wuhanstudio/Documents/Marking/Template/data/MaskedFace/val/images/mask-209.png: 352x640 4 with_masks, 13 without_masks, 4.1ms\n", "Speed: 0.7ms preprocess, 4.1ms inference, 0.7ms postprocess per image at shape (1, 3, 352, 640)\n", "\n", "image 1/1 /home/wuhanstudio/Documents/Marking/Template/data/MaskedFace/val/images/mask-328.png: 640x512 1 with_mask, 4.0ms\n", "Speed: 1.0ms preprocess, 4.0ms inference, 0.7ms postprocess per image at shape (1, 3, 640, 512)\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "\r", "39it [00:02, 36.68it/s]" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\n", "image 1/1 /home/wuhanstudio/Documents/Marking/Template/data/MaskedFace/val/images/mask-833.png: 384x640 2 with_masks, 4.1ms\n", "Speed: 0.7ms preprocess, 4.1ms inference, 0.7ms postprocess per image at shape (1, 3, 384, 640)\n", "\n", "image 1/1 /home/wuhanstudio/Documents/Marking/Template/data/MaskedFace/val/images/mask-512.png: 448x640 8 with_masks, 4.0ms\n", "Speed: 0.9ms preprocess, 4.0ms inference, 0.7ms postprocess per image at shape (1, 3, 448, 640)\n", "\n", "image 1/1 /home/wuhanstudio/Documents/Marking/Template/data/MaskedFace/val/images/mask-286.png: 480x640 3 with_masks, 4.1ms\n", "Speed: 0.9ms preprocess, 4.1ms inference, 0.7ms postprocess per image at shape (1, 3, 480, 640)\n", "\n", "image 1/1 /home/wuhanstudio/Documents/Marking/Template/data/MaskedFace/val/images/mask-370.png: 640x512 1 without_mask, 4.1ms\n", "Speed: 0.9ms preprocess, 4.1ms inference, 0.6ms postprocess per image at shape (1, 3, 640, 512)\n", "\n", "image 1/1 /home/wuhanstudio/Documents/Marking/Template/data/MaskedFace/val/images/mask-123.png: 512x640 3 with_masks, 4.6ms\n", "Speed: 1.0ms preprocess, 4.6ms inference, 0.7ms postprocess per image at shape (1, 3, 512, 640)\n", "\n", "image 1/1 /home/wuhanstudio/Documents/Marking/Template/data/MaskedFace/val/images/mask-829.png: 320x640 6 with_masks, 1 without_mask, 4.3ms\n", "Speed: 0.7ms preprocess, 4.3ms inference, 0.7ms postprocess per image at shape (1, 3, 320, 640)\n", "\n", "image 1/1 /home/wuhanstudio/Documents/Marking/Template/data/MaskedFace/val/images/mask-197.png: 384x640 1 with_mask, 4.2ms\n", "Speed: 0.8ms preprocess, 4.2ms inference, 0.6ms postprocess per image at shape (1, 3, 384, 640)\n", "\n", "image 1/1 /home/wuhanstudio/Documents/Marking/Template/data/MaskedFace/val/images/mask-793.png: 640x512 1 with_mask, 4.0ms\n", "Speed: 1.0ms preprocess, 4.0ms inference, 0.6ms postprocess per image at shape (1, 3, 640, 512)\n", "\n", "image 1/1 /home/wuhanstudio/Documents/Marking/Template/data/MaskedFace/val/images/mask-562.png: 352x640 1 with_mask, 1 mask_weared_incorrect, 4.1ms\n", "Speed: 0.7ms preprocess, 4.1ms inference, 0.7ms postprocess per image at shape (1, 3, 352, 640)\n", "\n", "image 1/1 /home/wuhanstudio/Documents/Marking/Template/data/MaskedFace/val/images/mask-182.png: 448x640 2 with_masks, 1 mask_weared_incorrect, 4.1ms\n", "Speed: 0.9ms preprocess, 4.1ms inference, 0.7ms postprocess per image at shape (1, 3, 448, 640)\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "\r", "49it [00:02, 47.10it/s]" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\n", "image 1/1 /home/wuhanstudio/Documents/Marking/Template/data/MaskedFace/val/images/mask-149.png: 480x640 7 with_masks, 1 without_mask, 4.1ms\n", "Speed: 0.9ms preprocess, 4.1ms inference, 0.7ms postprocess per image at shape (1, 3, 480, 640)\n", "\n", "image 1/1 /home/wuhanstudio/Documents/Marking/Template/data/MaskedFace/val/images/mask-560.png: 448x640 1 with_mask, 4.1ms\n", "Speed: 0.9ms preprocess, 4.1ms inference, 0.7ms postprocess per image at shape (1, 3, 448, 640)\n", "\n", "image 1/1 /home/wuhanstudio/Documents/Marking/Template/data/MaskedFace/val/images/mask-373.png: 448x640 13 with_masks, 2 without_masks, 3.8ms\n", "Speed: 0.9ms preprocess, 3.8ms inference, 0.7ms postprocess per image at shape (1, 3, 448, 640)\n", "\n", "image 1/1 /home/wuhanstudio/Documents/Marking/Template/data/MaskedFace/val/images/mask-248.png: 640x512 1 without_mask, 4.2ms\n", "Speed: 0.9ms preprocess, 4.2ms inference, 0.6ms postprocess per image at shape (1, 3, 640, 512)\n", "\n", "image 1/1 /home/wuhanstudio/Documents/Marking/Template/data/MaskedFace/val/images/mask-292.png: 480x640 1 with_mask, 4.1ms\n", "Speed: 0.9ms preprocess, 4.1ms inference, 0.6ms postprocess per image at shape (1, 3, 480, 640)\n", "\n", "image 1/1 /home/wuhanstudio/Documents/Marking/Template/data/MaskedFace/val/images/mask-041.png: 480x640 8 with_masks, 3.9ms\n", "Speed: 1.0ms preprocess, 3.9ms inference, 0.7ms postprocess per image at shape (1, 3, 480, 640)\n", "\n", "image 1/1 /home/wuhanstudio/Documents/Marking/Template/data/MaskedFace/val/images/mask-515.png: 640x512 1 with_mask, 4.1ms\n", "Speed: 1.0ms preprocess, 4.1ms inference, 0.7ms postprocess per image at shape (1, 3, 640, 512)\n", "\n", "image 1/1 /home/wuhanstudio/Documents/Marking/Template/data/MaskedFace/val/images/mask-148.png: 608x640 2 with_masks, 3 without_masks, 4.2ms\n", "Speed: 1.2ms preprocess, 4.2ms inference, 0.7ms postprocess per image at shape (1, 3, 608, 640)\n", "\n", "image 1/1 /home/wuhanstudio/Documents/Marking/Template/data/MaskedFace/val/images/mask-036.png: 384x640 6 with_masks, 1 without_mask, 4.1ms\n", "Speed: 0.7ms preprocess, 4.1ms inference, 0.7ms postprocess per image at shape (1, 3, 384, 640)\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "\r", "58it [00:02, 55.21it/s]" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\n", "image 1/1 /home/wuhanstudio/Documents/Marking/Template/data/MaskedFace/val/images/mask-275.png: 640x544 1 with_mask, 4.5ms\n", "Speed: 1.1ms preprocess, 4.5ms inference, 0.6ms postprocess per image at shape (1, 3, 640, 544)\n", "\n", "image 1/1 /home/wuhanstudio/Documents/Marking/Template/data/MaskedFace/val/images/mask-690.png: 416x640 19 with_masks, 1 without_mask, 4.2ms\n", "Speed: 0.8ms preprocess, 4.2ms inference, 0.7ms postprocess per image at shape (1, 3, 416, 640)\n", "\n", "image 1/1 /home/wuhanstudio/Documents/Marking/Template/data/MaskedFace/val/images/mask-581.png: 640x512 1 with_mask, 4.3ms\n", "Speed: 0.9ms preprocess, 4.3ms inference, 0.6ms postprocess per image at shape (1, 3, 640, 512)\n", "\n", "image 1/1 /home/wuhanstudio/Documents/Marking/Template/data/MaskedFace/val/images/mask-607.png: 448x640 2 with_masks, 1 without_mask, 4.1ms\n", "Speed: 0.9ms preprocess, 4.1ms inference, 0.7ms postprocess per image at shape (1, 3, 448, 640)\n", "\n", "image 1/1 /home/wuhanstudio/Documents/Marking/Template/data/MaskedFace/val/images/mask-227.png: 448x640 11 with_masks, 3.8ms\n", "Speed: 0.9ms preprocess, 3.8ms inference, 0.7ms postprocess per image at shape (1, 3, 448, 640)\n", "\n", "image 1/1 /home/wuhanstudio/Documents/Marking/Template/data/MaskedFace/val/images/mask-184.png: 352x640 16 with_masks, 4.1ms\n", "Speed: 0.7ms preprocess, 4.1ms inference, 0.7ms postprocess per image at shape (1, 3, 352, 640)\n", "\n", "image 1/1 /home/wuhanstudio/Documents/Marking/Template/data/MaskedFace/val/images/mask-387.png: 384x640 5 with_masks, 1 mask_weared_incorrect, 4.1ms\n", "Speed: 0.8ms preprocess, 4.1ms inference, 0.8ms postprocess per image at shape (1, 3, 384, 640)\n", "\n", "image 1/1 /home/wuhanstudio/Documents/Marking/Template/data/MaskedFace/val/images/mask-169.png: 640x512 1 with_mask, 4.1ms\n", "Speed: 1.0ms preprocess, 4.1ms inference, 0.6ms postprocess per image at shape (1, 3, 640, 512)\n", "\n", "image 1/1 /home/wuhanstudio/Documents/Marking/Template/data/MaskedFace/val/images/mask-411.png: 448x640 7 with_masks, 1 without_mask, 4.1ms\n", "Speed: 0.8ms preprocess, 4.1ms inference, 0.7ms postprocess per image at shape (1, 3, 448, 640)\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "\r", "67it [00:02, 62.86it/s]" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\n", "image 1/1 /home/wuhanstudio/Documents/Marking/Template/data/MaskedFace/val/images/mask-742.png: 640x512 1 with_mask, 4.2ms\n", "Speed: 0.9ms preprocess, 4.2ms inference, 0.6ms postprocess per image at shape (1, 3, 640, 512)\n", "\n", "image 1/1 /home/wuhanstudio/Documents/Marking/Template/data/MaskedFace/val/images/mask-621.png: 384x640 3 with_masks, 2 without_masks, 4.1ms\n", "Speed: 0.8ms preprocess, 4.1ms inference, 0.7ms postprocess per image at shape (1, 3, 384, 640)\n", "\n", "image 1/1 /home/wuhanstudio/Documents/Marking/Template/data/MaskedFace/val/images/mask-280.png: 448x640 14 with_masks, 7 without_masks, 4.1ms\n", "Speed: 0.9ms preprocess, 4.1ms inference, 0.7ms postprocess per image at shape (1, 3, 448, 640)\n", "\n", "image 1/1 /home/wuhanstudio/Documents/Marking/Template/data/MaskedFace/val/images/mask-637.png: 384x640 6 with_masks, 4.1ms\n", "Speed: 0.7ms preprocess, 4.1ms inference, 0.9ms postprocess per image at shape (1, 3, 384, 640)\n", "\n", "image 1/1 /home/wuhanstudio/Documents/Marking/Template/data/MaskedFace/val/images/mask-745.png: 640x512 1 with_mask, 4.1ms\n", "Speed: 1.0ms preprocess, 4.1ms inference, 0.7ms postprocess per image at shape (1, 3, 640, 512)\n", "\n", "image 1/1 /home/wuhanstudio/Documents/Marking/Template/data/MaskedFace/val/images/mask-606.png: 448x640 4 with_masks, 4.1ms\n", "Speed: 0.9ms preprocess, 4.1ms inference, 0.7ms postprocess per image at shape (1, 3, 448, 640)\n", "\n", "image 1/1 /home/wuhanstudio/Documents/Marking/Template/data/MaskedFace/val/images/mask-152.png: 480x640 8 with_masks, 4.1ms\n", "Speed: 1.0ms preprocess, 4.1ms inference, 0.7ms postprocess per image at shape (1, 3, 480, 640)\n", "\n", "image 1/1 /home/wuhanstudio/Documents/Marking/Template/data/MaskedFace/val/images/mask-296.png: 384x640 27 with_masks, 15 without_masks, 4.1ms\n", "Speed: 0.8ms preprocess, 4.1ms inference, 0.7ms postprocess per image at shape (1, 3, 384, 640)\n", "\n", "image 1/1 /home/wuhanstudio/Documents/Marking/Template/data/MaskedFace/val/images/mask-699.png: 448x640 1 with_mask, 6 without_masks, 4.0ms\n", "Speed: 0.9ms preprocess, 4.0ms inference, 0.7ms postprocess per image at shape (1, 3, 448, 640)\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "\r", "76it [00:02, 69.31it/s]" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\n", "image 1/1 /home/wuhanstudio/Documents/Marking/Template/data/MaskedFace/val/images/mask-094.png: 384x640 5 with_masks, 1 without_mask, 1 mask_weared_incorrect, 4.0ms\n", "Speed: 0.8ms preprocess, 4.0ms inference, 0.7ms postprocess per image at shape (1, 3, 384, 640)\n", "\n", "image 1/1 /home/wuhanstudio/Documents/Marking/Template/data/MaskedFace/val/images/mask-130.png: 640x544 2 with_masks, 2 without_masks, 4.0ms\n", "Speed: 1.0ms preprocess, 4.0ms inference, 0.7ms postprocess per image at shape (1, 3, 640, 544)\n", "\n", "image 1/1 /home/wuhanstudio/Documents/Marking/Template/data/MaskedFace/val/images/mask-086.png: 480x640 3 with_masks, 1 without_mask, 4.1ms\n", "Speed: 0.9ms preprocess, 4.1ms inference, 0.6ms postprocess per image at shape (1, 3, 480, 640)\n", "\n", "image 1/1 /home/wuhanstudio/Documents/Marking/Template/data/MaskedFace/val/images/mask-589.png: 640x448 1 with_mask, 1 mask_weared_incorrect, 4.2ms\n", "Speed: 0.9ms preprocess, 4.2ms inference, 0.7ms postprocess per image at shape (1, 3, 640, 448)\n", "\n", "image 1/1 /home/wuhanstudio/Documents/Marking/Template/data/MaskedFace/val/images/mask-058.png: 448x640 13 with_masks, 4.0ms\n", "Speed: 0.9ms preprocess, 4.0ms inference, 0.7ms postprocess per image at shape (1, 3, 448, 640)\n", "\n", "image 1/1 /home/wuhanstudio/Documents/Marking/Template/data/MaskedFace/val/images/mask-377.png: 480x640 1 with_mask, 4.1ms\n", "Speed: 0.9ms preprocess, 4.1ms inference, 0.7ms postprocess per image at shape (1, 3, 480, 640)\n", "\n", "image 1/1 /home/wuhanstudio/Documents/Marking/Template/data/MaskedFace/val/images/mask-260.png: 480x640 50 with_masks, 3.8ms\n", "Speed: 0.9ms preprocess, 3.8ms inference, 0.7ms postprocess per image at shape (1, 3, 480, 640)\n", "\n", "image 1/1 /home/wuhanstudio/Documents/Marking/Template/data/MaskedFace/val/images/mask-594.png: 448x640 8 with_masks, 4.1ms\n", "Speed: 0.8ms preprocess, 4.1ms inference, 0.7ms postprocess per image at shape (1, 3, 448, 640)\n", "\n", "image 1/1 /home/wuhanstudio/Documents/Marking/Template/data/MaskedFace/val/images/mask-598.png: 640x512 1 with_mask, 3.9ms\n", "Speed: 1.0ms preprocess, 3.9ms inference, 0.6ms postprocess per image at shape (1, 3, 640, 512)\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "85it [00:02, 32.88it/s]\n" ] } ], "source": [ "predicted_counts, mape_score = count_masks(model, test_dataset)" ] }, { "cell_type": "markdown", "id": "67dda1aa", "metadata": {}, "source": [ "## MAPE" ] }, { "cell_type": "code", "execution_count": 10, "id": "e7624ff3", "metadata": {}, "outputs": [], "source": [ "def compute_mape(prediction, truth):\n", " mape = np.mean( np.abs(truth - prediction) / np.maximum(truth, np.ones_like(truth)) ) * 100\n", " return mape" ] }, { "cell_type": "code", "execution_count": 11, "id": "fbb7aa74", "metadata": {}, "outputs": [], "source": [ "# X2d0f9f39\n", "# predicted_counts[:, [0, 1]] = predicted_counts[:, [1, 0]]" ] }, { "cell_type": "code", "execution_count": 12, "id": "028f3e71", "metadata": {}, "outputs": [], "source": [ "predicted_counts[:, [1, 2]] = predicted_counts[:, [2, 1]]" ] }, { "cell_type": "code", "execution_count": 13, "id": "c9176cc8", "metadata": {}, "outputs": [], "source": [ "MAPE = compute_mape(predicted_counts, gt_counts)" ] }, { "cell_type": "code", "execution_count": 14, "id": "828484ae", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "133.83205417471694\n" ] } ], "source": [ "print(MAPE)" ] }, { "cell_type": "markdown", "id": "b29e3ba9", "metadata": {}, "source": [ "## Final Score" ] }, { "cell_type": "code", "execution_count": 15, "id": "9b170114", "metadata": { "scrolled": true }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Score: 0\n" ] } ], "source": [ "if MAPE <= 10:\n", " print(\"Score: \", 25*1.0)\n", "elif MAPE <= 15:\n", " print(\"Score: \", 25*0.875)\n", "elif MAPE <= 20:\n", " print(\"Score: \", 25*0.75)\n", "elif MAPE <= 25:\n", " print(\"Score: \", 25*0.625)\n", "elif MAPE <= 30:\n", " print(\"Score: \", 25*0.5)\n", "else:\n", " print(\"Score: \", 0) " ] }, { "cell_type": "code", "execution_count": null, "id": "258ec405", "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "what", "language": "python", "name": "what" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.8.13" } }, "nbformat": 4, "nbformat_minor": 5 }